Abstract
Well-defined chitosan nanocapsules (CSNCs) with tunable sizes were synthesized through the interfacial cross-linking of N-maleoyl-functionalized chitosan (MCS) in miniemulsions, and their application in the delivery of doxorubicin (Dox) was investigated. MCS was prepared by the amidation reaction of CS with maleic anhydride in water/DMSO at 65 °C for 20 h. Subsequently, thiol-ene cross-linking was conducted in oil-in-water miniemulsions at room temperature under UV irradiation for 1 h, using MCS as both a surfactant and precursor polymer, 1,4-butanediol bis(3-mercapto-propionate) as a cross-linker, and d-α-tocopheryl poly(ethylene glycol) 1000 succinate as a cosurfactant. With the increase in cosurfactant concentration in the reaction systems, the sizes of the resulting CSNCs decreased steadily. Dox-loaded CSNCs were readily prepared by in situ encapsulation of Dox during miniemulsion cross-linking. With acid-labile β-thiopropionate cross-linkages, the Dox-loaded CSNCs demonstrated a faster release rate under acidic conditions. Relative to free Dox, Dox-loaded CSNCs exhibited enhanced cytotoxicity toward MCF-7 breast cancer cells without any noticeable cytotoxicity from empty CSNCs. The effective delivery of Dox to MCF-7 breast cancer cells via Dox-loaded CSNCs was also observed.
Original language | English |
---|---|
Pages (from-to) | 4111-4119 |
Number of pages | 9 |
Journal | Langmuir |
Volume | 30 |
Issue number | 14 |
DOIs | |
Publication status | Published - 15 Apr 2014 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry