Synthesis of one-dimensional Bi2O3-Bi2O2.33heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes

Yin Peng, Ke Ke Wang, Ting Liu, Jian Xu, Bingang Xu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

102 Citations (Scopus)


One-dimensional (1D) Bi2O3-Bi2O2.33heterostructures were synthesized by calcining Bi2O2CO3-Bi(OHC2O4)·2H2O precursors. Ultrathin Bi2O2.33nanosheets were uniformly patched onto the porous Bi2O3rod with well-matched lattice fringes, which increased the interface quality and then provided the smallest penetration barrier for electron-hole pairs transfer between Bi2O3-Bi2O2.33interfaces. The photocatalytic performance of the obtained products was evaluated by the degradation of high-concentration methyl orange (MO) and phenol under solar/visible light irradiation. The results show that Bi2O3-Bi2O2.33heterostructure displays higher photocatalytic activity than pure phase Bi2O3and Bi2O2.33, and more encouragingly, 30 mg/L of MO (or phenol) can be completely degraded in 60 min under visible light irradiation using Bi2O3-Bi2O2.33(S2) heterostructure as photocatalyst. This enhanced photocatalytic performance is ascribed to the synergistic effect of the suitable band alignment of the Bi2O3and Bi2O2.33, high interface quality beween Bi2O3and Bi2O2.33junctions and one-dimensional ordered nanostructure. This work would offer a novel route to design and fabrication of junction structures with high interface quality for photocatalytic applications.
Original languageEnglish
Pages (from-to)946-954
Number of pages9
JournalApplied Catalysis B: Environmental
Publication statusPublished - 1 Apr 2017


  • Bi O - Bi O heterostructure 2 3 2 2.33
  • Environmental remediation
  • Interface quality
  • Photocatalysis

ASJC Scopus subject areas

  • Catalysis
  • Environmental Science(all)
  • Process Chemistry and Technology

Cite this