Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water

Samuel C.N. Tang, Peng Wang, Ke Yin, Irene M.C. Lo

Research output: Journal article publicationJournal articleAcademic researchpeer-review

46 Citations (Scopus)

Abstract

Many magnetic adsorbents reported in the literature, such as iron oxides, for Cr(VI) removal have been found effective only in low pH environments. Moreover, the application of polymeric hydrogels on heavy metal removal has been hindered by difficulties in separation by filtration. In this study, a magnetic cationic hydrogel was synthesized for Cr(VI) removal from contaminated water, making use of the advantages of magnetic adsorbents and polymeric hydrogels. The magnetic hydrogel was produced by imbedding 10-nm γ-Fe2O 3 nanoparticles into the polymeric matrix via radical polymerization. Characterization of the hydrogel was undertaken with Fourier transform infrared and vibrating sample magnetometer; swelling properties were tested and anionic adsorption capacity was evaluated. The magnetic hydrogel showed a superior Cr(VI) removal capacity compared to commercial products such as MIEX®. Cr(VI) removal was independent of solution pH. Results show that Cr(VI) removal kinetics was improved drastically by grinding the bulk hydrogel into powder form. At relevant concentrations, common water anions (e.g., Cl-, SO42-, PO43-) and natural organic matter did not exhibit significant inhibition of Cr(VI) adsorption onto the hydrogel. Results of vibrating sample magnetometer indicate that the magnetic hydrogel can be easily separated from treatment systems. Regeneration of the magnetic hydrogel can be easily achieved by washing the Cr(VI)-loaded hydrogel with 0.5 M NaCl solution, with a recovery rate of about 90% of Cr(VI).

Original languageEnglish
Pages (from-to)947-954
Number of pages8
JournalEnvironmental Engineering Science
Volume27
Issue number11
DOIs
Publication statusPublished - 1 Nov 2010
Externally publishedYes

Keywords

  • adsorbent
  • chromium
  • hydrogel
  • ion exchange
  • magnetic nanoparticles

ASJC Scopus subject areas

  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Cite this