Survival Analysis with a Random Change-Point

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Contemporary works in change-point survival models mainly focus on an unknown universal change-point shared by the whole study population. However, in some situations, the change-point is plausibly individual-specific, such as when it corresponds to the telomere length or menopausal age. Also, maximum-likelihood-based inference for the fixed change-point parameter is notoriously complicated. The asymptotic distribution of the maximum-likelihood estimator is non-standard, and computationally intensive bootstrap techniques are commonly used to retrieve its sampling distribution. This article is motivated by a breast cancer study, where the disease-free survival time of the patients is postulated to be regulated by the menopausal age, which is unobserved. As menopausal age varies across patients, a fixed change-point survival model may be inadequate. Therefore, we propose a novel proportional hazards model with a random change-point. We develop a nonparametric maximum-likelihood estimation approach and devise a stable expectation–maximization algorithm to compute the estimators. Because the model is regular, we employ conventional likelihood theory for inference based on the asymptotic normality of the Euclidean parameter estimators, and the variance of the asymptotic distribution can be consistently estimated by a profile-likelihood approach. A simulation study demonstrates the satisfactory finite-sample performance of the proposed methods, which yield small bias and proper coverage probabilities. The methods are applied to the motivating breast cancer study.

Original languageEnglish
Pages (from-to)2083-2095
Number of pages13
JournalStatistical Methods in Medical Research
Volume32
Issue number11
DOIs
Publication statusPublished - Nov 2023

Keywords

  • Breast cancer
  • expectation–maximization algorithm
  • profile likelihood
  • proportional hazards model
  • right-censored data

ASJC Scopus subject areas

  • Epidemiology
  • Statistics and Probability
  • Health Information Management

Fingerprint

Dive into the research topics of 'Survival Analysis with a Random Change-Point'. Together they form a unique fingerprint.

Cite this