Abstract
Ti-6Al-2Zr-1Mo-1V is a near α-based Ti-alloy widely used in aerospace industries. Using this alloy to make large and complex-geometry aerospace components, it requires large forming equipment and consumes a great deal of energy. For integral forming of products by using this Ti-alloy, superplasticity deformation (SPD) is a promising process as it increases product strength, reduces product weight, saves materials and uses small capacity equipment. In this paper, the SPD of the Ti-alloy by two different SPD approaches was conducted. The first approach is the SPD induced by the cyclic change of strain-rate; while the other is the maximum strain-rate sensitivity exponent (m) SPD (MaxmSPD). The as-received bulk material was first pre-processed via upsetting and cogging deformation such that the fine microstructure with grain size less than 10 μm was obtained. For the first approach, the strain-rate varied following a continuous variation pattern until the final necking occurred. In addition, three deformation temperatures, viz., 850, 900, 950 °C, and the strain-rate of 5 × 10-5-5 × 10-3 s-1 were employed. The rheological behavior and the effect of process parameters on flow stress and the value of m were investigated. The best elongation of 830% at 900 °C was obtained. For the MaxmSPD, the best elongation of 1066% at 900 °C was identified. The superplasticity capacity is increased by 28.43% compared to the first approach. Therefore, the MaxmSPD has a better SPD capability than the SPD induced by the cyclic change of strain-rate for Ti-6Al-2Zr-1Mo-1V alloy.
Original language | English |
---|---|
Pages (from-to) | 213-217 |
Number of pages | 5 |
Journal | Journal of Alloys and Compounds |
Volume | 491 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 18 Feb 2010 |
Keywords
- Maximum m SPD
- SPD induced by the cyclic changing strain-rate
- Superplasticity deformation (SPD)
- Ti-6Al-2Zr-1Mo-1V
ASJC Scopus subject areas
- Mechanical Engineering
- Mechanics of Materials
- Materials Chemistry
- Metals and Alloys