Abstract
Praseodymium(Pr3+)-doped fluorotellurite glasses were synthesized and broadband photoluminescence (PL) covering a wavelength range from 1.30 to 1.67 μm was observed under both 488 and 590 nm wavelength excitations. The broadband PL emission is mainly due to the radiative transition from the manifolds Pr3+:1D2 to1G4. The PL line-shape, band width, and lifetime were modified by the Pr3+dopant concentration, and a quantum efficiency as high as 73.7% was achieved with Pr3+dopant in a low concentration of 0.05 mol%. The good spectroscopic properties were also predicted by the Judd-Ofelt analysis, which indicates a stronger asymmetry and covalent bonding between the Pr3+sites and the matrix lifgand field. The large stimulated emission cross-section, long measured lifetime, and broad emission bandwidth confirm the potential of the Pr3+- singly doped fluorotellurite glass as broadband luminescence sources for the broadband near-infrared optical amplifications and tunable lasers.
Original language | English |
---|---|
Pages (from-to) | 3803-3813 |
Number of pages | 11 |
Journal | Optics Express |
Volume | 20 |
Issue number | 4 |
DOIs | |
Publication status | Published - 13 Feb 2012 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics