Abstract
The structures formed by the adsorption of carboxyalkylphosphonic acids on metal oxides were investigated by1H fast magic angle spinning (MAS), heteronuclear correlation (HETCOR), and1H double-quantum (DQ) MAS solid-state NMR experiments. The diacids HO2C(CH2)nPO3H2(n = 2, 3, 11, and 15) were adsorbed on TiO2and two types of ZrO2powders having average particle sizes of 20, 30, and 5 nm, respectively. Carboxyalkylphosphonic acids bind selectively via the phosphonate group, forming monolayers with pendant carboxylic acid groups. Whereas dipolar coupled P-OH protons are detected on TiO2, there are only isolated residual P-OH groups on ZrO2, reflecting the relative binding strengths of phosphonic acids on these two substrates. From a comparative1H MAS NMR study with an analogous monolayer system, HO2C(CH2)7SH coated gold nanoparticles, the hydrogen-bonding network at the monolayer/air interface is found to be quite disordered, at least for SAMs deposited on nonplanar substrates. Whereas only hydrogen-bonded homodimers occur in the bulk diacids, hydrogen bonding between the carboxylic and phosphonic acid groups is present in multilayers of the diacids on the ZrO2nanopowder.
Original language | English |
---|---|
Pages (from-to) | 4174-4184 |
Number of pages | 11 |
Journal | Journal of the American Chemical Society |
Volume | 125 |
Issue number | 14 |
DOIs | |
Publication status | Published - 9 Apr 2003 |
Externally published | Yes |
ASJC Scopus subject areas
- Catalysis
- Chemistry(all)
- Biochemistry
- Colloid and Surface Chemistry