Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with Α-Bi2O3 under visible light irradiation: Catalyst fabrication, performance and reaction mechanism

Yiping Wang, Chao Liu, Yuting Zhang, Weidong Meng, Bin Yu, Shengyan Pu, Donghai Yuan, Fei Qi, Bingbing Xu, Wei Chu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

66 Citations (Scopus)


Sulfate radical-based photo-Fenton (SR-photo-Fenton) reaction, assisted by visible light irradiation, was achieved by CuBi2O4 and its composites with α-Bi2O3 for refractory chemical degradation in aqueous solution. Herein, this catalyst was fabricated by a sol-gel method and the fabrication conditions, including calcination temperature and molar ratio of Cu/Bi, were optimized according to the crystal phase composition, catalytic activity and toxic copper ion leaching. The optimal calcination temperature was 500 °C and molar ratio of Bi to Cu was 2.0. The catalyst containing CuBi2O4 and α-Bi2O3 showed a higher density of surface -OH which might be the key surface active site than pure CuBi2O4. The influence of initial solution pH, PMS concentration, catalyst dosage and catalyst reuse on rhodamine B (RhB) degradation was investigated. Importantly, calcination at 500 °C reverted the catalytic activity of catalyst. Results of electron paramagnetic resonance, competitive radical experiments and surface chemical property characterization demonstrated that the reaction mechanism of this novel SR-photo-Fenton reaction is a combination of interface and solution reactions. In the interface reaction, the transfer of photogenerated electron/hole pairs drives the decomposition of PMS to produce SO4[rad] and [rad]OH. Furthermore, the cycling of Cu(I)/Cu(II) facilitated effective PMS activation to generate free radical that was responsible for the degradation of RhB. The second order reaction rate constant between RhB and SO4[rad] was determined to be 0.595-6.436 × 1010 M−1 S−1 based on the chemical reaction kinetics of radical, which was a first and important report for SO4[rad] chemistry.

Original languageEnglish
Pages (from-to)264-273
Number of pages10
JournalApplied Catalysis B: Environmental
Publication statusPublished - 5 Nov 2018


  • CuBiO
  • Peroxymonosulfate
  • Rhodamine B
  • Sulfate radical photo-Fenton

ASJC Scopus subject areas

  • Catalysis
  • Environmental Science(all)
  • Process Chemistry and Technology

Cite this