Sub-Nanometer Electron Beam Phase Patterning in 2D Materials

Fangyuan Zheng, Deping Guo, Lingli Huang, Lok Wing Wong, Xin Chen, Cong Wang, Yuan Cai, Ning Wang, Chun Sing Lee, Shu Ping Lau, Thuc Hue Ly, Wei Ji, Jiong Zhao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

11 Citations (Scopus)

Abstract

Phase patterning in polymorphic two-dimensional (2D) materials offers diverse properties that extend beyond what their pristine structures can achieve. If precisely controllable, phase transitions can bring exciting new applications for nanometer-scale devices and ultra-large-scale integrations. Here, the focused electron beam is capable of triggering the phase transition from the semiconducting T’’ phase to metallic T’ and T phases in 2D rhenium disulfide (ReS2) and rhenium diselenide (ReSe2) monolayers, rendering ultra-precise phase patterning technique even in sub-nanometer scale is found. Based on knock-on effects and strain analysis, the phase transition mechanism on the created atomic vacancies and the introduced substantial in-plane compressive strain in 2D layers are clarified. This in situ high-resolution scanning transmission electron microscopy (STEM) and in situ electrical characterizations agree well with the density functional theory (DFT) calculation results for the atomic structures, electronic properties, and phase transition mechanisms. Grain boundary engineering and electrical contact engineering in 2D are thus developed based on this patterning technique. The patterning method exhibits great potential in ultra-precise electron beam lithography as a scalable top-down manufacturing method for future atomic-scale devices.

Original languageEnglish
Article number2200702
JournalAdvanced Science
Volume9
Issue number23
DOIs
Publication statusPublished - Jun 2022

Keywords

  • 2D materials
  • electrical contact
  • phase patterning
  • scanning transmission electron microscopy (STEM)
  • sub-nanometer

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Chemical Engineering
  • General Materials Science
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Sub-Nanometer Electron Beam Phase Patterning in 2D Materials'. Together they form a unique fingerprint.

Cite this