Study on tensile properties of nanoreinforced epoxy polymer: Macroscopic experiments and nanoscale FEM simulation prediction

Zhenqing Wang, Fang Liu, Wenyan Liang, Li Min Zhou

Research output: Journal article publicationJournal articleAcademic researchpeer-review

15 Citations (Scopus)

Abstract

The effect of nanosilica contents on mechanical properties of the epoxy matrix with some nanoparticle aggregations was studied in macroscopic experiments and nanoscale simulation, particularly with regard to the effective modulus and ultimate stress. Three analytical models were used to obtain the effective elastic modulus of nanoparticle-reinforced composites. Based on Monte-Carlo method, the special program for the automatic generation of 2D random distribution particles without overlapping was developed for nanocomposite modeling. Weight fractions of nanoparticles were converted to volume fractions, in order to coordinate the content unit in the simulation. In numerical analysis, the weak interface strengthening and toughening mechanism was adopted. Virtual crack closure technique (VCCT) and extended finite element method (XFEM) were used to simulate phenomena of nanoparticle debonding and matrix crack growth. Experimental and simulation results show a good agreement with each other. By way of simulation, the weak interface toughening and strengthening mechanism of nanocomposites is confirmed.
Original languageEnglish
Article number392450
JournalAdvances in Materials Science and Engineering
Volume2013
DOIs
Publication statusPublished - 12 Jun 2013

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)

Fingerprint

Dive into the research topics of 'Study on tensile properties of nanoreinforced epoxy polymer: Macroscopic experiments and nanoscale FEM simulation prediction'. Together they form a unique fingerprint.

Cite this