Study on aero-acoustic structural interactions in fan-ducted system

Yan Kei Chiang, Yat Sze Choy, Li Cheng, Shiu Keung Tang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Mitigation of sound radiation from subsonic axial fan in the fan-ducted system at low frequencies remains a technical challenge. Traditional dissipative approach such as absorption material often requires sufficiently long attenuation path for desirable noise reduction performance. More advanced passive control technology such as membrane housing which relies on vibro-acoustic coupling mechanism works effectively on the attenuation of the first and second blade passage frequency in case of steady flow. However, the performance of such device which is composed of thin membrane may be affected by unsteady flow field. This study examined the interaction between vortex unsteady motion, a tensioned membrane housing of finite length and axial fan with dipole nature using the matched asymptotic expansion technique and potential theory. A two-dimensional numerical model is established to explore the sound radiation of each components and the performance of the membrane housing for controlling sound radiation from axial fan in the present of vortex inside uniform mean flow. The results show that there is higher chance of sound amplification when a vortex stream is closer to the light membrane under weak mean flow speed. Under the condition of weak mean flow speed, the sound radiation from the membrane is also amplified when the cavity height is shallower. The result is beneficial for the design of the device of membrane housing.
Original languageEnglish
Title of host publicationINTERNOISE 2014 - 43rd International Congress on Noise Control Engineering
Subtitle of host publicationImproving the World Through Noise Control
PublisherAustralian Acoustical Society
ISBN (Electronic)9780909882037
Publication statusPublished - 1 Jan 2014
Event43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, INTERNOISE 2014 - Melbourne, Australia
Duration: 16 Nov 201419 Nov 2014

Conference

Conference43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, INTERNOISE 2014
Country/TerritoryAustralia
CityMelbourne
Period16/11/1419/11/14

Keywords

  • Axial fans
  • Flow-induced noise generation in ducts and pipes

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint

Dive into the research topics of 'Study on aero-acoustic structural interactions in fan-ducted system'. Together they form a unique fingerprint.

Cite this