Abstract
Clustering ensemble is a momentous technique in machine learning and contribute much to the applications in many areas. General clustering ensemble methods pay more attention to predicting cluster labels than structures of clusters. In fact, learning cluster structures implicates sufficient information to rebuild the dataset and is competent for being the replacement of redundant predicted cluster labels. In this paper, we introduce the fuzzy theory into the structure framework and propose a newfangled double fuzzy c-means structure ensemble framework, named as FCM2SE. FCM2SE makes use of the cluster structure information instead of predicted labels to gain a representative ensemble structure. We also design two novel labeling criteria to distribute the samples to the corresponding clusters. The empirical results on synthetic datasets and UCI machine learning datasets demonstrate the effectiveness of the proposed method.
Original language | English |
---|---|
Title of host publication | Proceedings of 2012 International Conference on Machine Learning and Cybernetics, ICMLC 2012 |
Pages | 1383-1389 |
Number of pages | 7 |
Volume | 4 |
DOIs | |
Publication status | Published - 31 Dec 2012 |
Event | 2012 International Conference on Machine Learning and Cybernetics, ICMLC 2012 - Xian, Shaanxi, China Duration: 15 Jul 2012 → 17 Jul 2012 |
Conference
Conference | 2012 International Conference on Machine Learning and Cybernetics, ICMLC 2012 |
---|---|
Country/Territory | China |
City | Xian, Shaanxi |
Period | 15/07/12 → 17/07/12 |
ASJC Scopus subject areas
- Artificial Intelligence
- Computational Theory and Mathematics
- Computer Networks and Communications
- Human-Computer Interaction