Structural modal identification and health monitoring of building structures using self-sensing cementitious composites

Siqi Ding, You Wu Wang, Yi Qing Ni, Baoguo Han

Research output: Journal article publicationJournal articleAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Recently self-sensing cementitious composite has demonstrated its strong potentiality for structural health monitoring of civil infrastructures because of its low-cost, long-term stability and compatibility with concrete structures. In this paper, we propose novel hybrid nanocarbon materials engineered cement-based sensors (HNCSs) with high-sensitivity, which are fabricated with self-sensing cementitious composites containing electrostatic self-assembled CNT/NCB composite fillers. The mechanical property and sensing performance of the HNCSs are pre-characterized under static and dynamic compressive loadings. The HNCSs are then integrated into a five-story building model via custom-made clamps to verify the feasibility for dynamic response measurements. Results show that the developed sensors have satisfactory mechanical property and excellent pressure-sensitive reproducibility and stability. With clamps holding on the building model, the HNCSs perform satisfactorily under sinusoidal excitations in the frequency range from 2 to 40 Hz. In addition, the modal frequencies and their changes of the building model caused by 'damage' simulated through adding additional masses identified by the HNCSs are favorably consistent with the counterparts acquired by accelerometers and strain gauges, indicating that the developed HNCSs have great potential for structural modal identification and damage detection applications.

Original languageEnglish
Article number055013
JournalSmart Materials and Structures
Volume29
Issue number5
DOIs
Publication statusPublished - May 2020

ASJC Scopus subject areas

  • Signal Processing
  • Civil and Structural Engineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Electrical and Electronic Engineering

Cite this