Stress transfer in the fibre fragmentation test - Part I An improved analysis based on a shear strength criterion

Jang Kyo Kim, Li Min Zhou, Yiu Wing Mai

Research output: Journal article publicationJournal articleAcademic researchpeer-review

23 Citations (Scopus)

Abstract

An improved micromechanics model has been developed of the stress transfer for a single fibre embedded in a matrix subjected to uniaxial loading. Debond crack growth is analysed based on the shear strength criterion such that when the interfacial shear stress reaches the shear bond strength, debonding occurs; and the average strength concept based on Weibull statistics is considered for fibre fragmentation. The influences of the interfacial shear bond strength and the fibre strength on the stress distributions in the composite constituents are evaluated. Depending on the relative magnitudes of these two strength parameters and given the elastic constants and geometric factors, three distinct conditions of the fibre-matrix interface are properly identified which include full bonding, partial debonding and full frictional bonding. Also quantified are the necessary criteria which must be satisfied in order for each interface condition to be valid. Finally, the mean fibre fragment length is predicted as a function of applied strain using a model composite of carbon fibre-epoxy matrix. The parametric study suggests that the critical transfer length predicted when the applied strain (or stress) required for further fibre fragmentation approaches infinity, can be regarded as a material constant, which is the sum of the bonded and the debonded lengths for the model composite.
Original languageEnglish
Pages (from-to)6233-6245
Number of pages13
JournalJournal of Materials Science
Volume28
Issue number22
DOIs
Publication statusPublished - 1 Jan 1993
Externally publishedYes

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Stress transfer in the fibre fragmentation test - Part I An improved analysis based on a shear strength criterion'. Together they form a unique fingerprint.

Cite this