Story Ending Generation with Multi-Level Graph Convolutional Networks over Dependency Trees

Qingbao Huang, Linzhang Mo, Pijian Li, Yi Cai, Qingguang Liu, Jielong Wei, Qing Li, Ho Fung Leung

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

16 Citations (Scopus)

Abstract

As an interesting and challenging task, story ending generation aims at generating a reasonable and coherent ending for a given story context. The key challenge of the task is to comprehend the context sufficiently and capture the hidden logic information effectively, which has not been well explored by most existing generative models. To tackle this issue, we propose a context-aware Multi-level Graph Convolutional Networks over Dependency Parse (MGCN-DP) trees to capture dependency relations and context clues more effectively. We utilize dependency parse trees to facilitate capturing relations and events in the context implicitly, and Multilevel Graph Convolutional Networks to update and deliver the representation crossing levels to obtain richer contextual information. Both automatic and manual evaluations show that our MGCN-DP can achieve comparable performance with state-of-the-art models. Our source code is available at https://github.com/VISLANG-Lab/MLGCN-DP.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages13073-13081
Number of pages9
ISBN (Electronic)9781713835974
Publication statusPublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume14B

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Story Ending Generation with Multi-Level Graph Convolutional Networks over Dependency Trees'. Together they form a unique fingerprint.

Cite this