@inproceedings{90697b8ab8314794af9f7ee2e2b21a86,
title = "Stock time series categorization and clustering Via SB-tree optimization",
abstract = "SB-Tree is a data structure proposed to represent time series according to the importance of the data points. Its advantages over traditional time series representation approaches include: representing time series directly in time domain (shape preservation), retrieving time series data according to the importance of the data points and facilitating multi-resolution time series retrieval. Based on these benefits, one may find this representation particularly attractive in financial time series domain and the corresponding data mining tasks, i.e. categorization and clustering. In this paper, an investigation on the size of the SB-Tree is reported. Two SB-Tree optimization approaches are proposed to reduce the size of the SB-Tree while the overall shape of the time series can be preserved. As demonstrated by various experiments, the proposed approach is suitable for different categorization and clustering applications.",
author = "Fu, {Tak Chung} and Law, {Chi Wai} and Chan, {Kin Kee} and Chung, {Fu Lai Korris} and Ng, {Chak Man}",
year = "2006",
month = jan,
day = "1",
language = "English",
isbn = "3540459162",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "1130--1139",
booktitle = "Fuzzy Systems and Knowledge Discovery - Third International Conference, FSKD 2006, Proceedings",
address = "Germany",
note = "3rd International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2006 ; Conference date: 24-09-2006 Through 28-09-2006",
}