STEERER: Resolving Scale Variations for Counting and Localization via Selective Inheritance Learning

Tao Han, Lei Bai, Lingbo Liu, Wanli Ouyang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

12 Citations (Scopus)

Abstract

Scale variation is a deep-rooted problem in object counting, which has not been effectively addressed by existing scale-aware algorithms. An important factor is that they typically involve cooperative learning across multi-resolutions, which could be suboptimal for learning the most discriminative features from each scale. In this paper, we propose a novel method termed STEERER (SelecTivE inhERitance lEaRning) that addresses the issue of scale variations in object counting. STEERER selects the most suitable scale for patch objects to boost feature extraction and only inherits discriminative features from lower to higher resolution progressively. The main insights of STEERER are a dedicated Feature Selection and Inheritance Adaptor (FSIA), which selectively forwards scale-customized features at each scale, and a Masked Selection and Inheritance Loss (MSIL) that helps to achieve high-quality density maps across all scales. Our experimental results on nine datasets with counting and localization tasks demonstrate the unprecedented scale generalization ability of STEERER. Code is available at https://github.com/taohan10200/STEERER.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages21791-21802
Number of pages12
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'STEERER: Resolving Scale Variations for Counting and Localization via Selective Inheritance Learning'. Together they form a unique fingerprint.

Cite this