Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity

L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, Wei Chen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

185 Citations (Scopus)


Stable Cu2O nanocrystals of around 3 nm were uniformly and densely grown on functionalized graphene sheets (FGS), which act as molecular templates instead of surfactants for controlled nucleation; the distribution density of nanocrystals can be easily controlled by FGS with different C/O ratios. The nanocomposite displays improved stability of the crystalline phase in wet air, which is attributed to finite-size effects that the high-symmetry crystalline phase is to be more stable at smaller size. Meanwhile, we conjecture that the oxygen adsorbed on the interfacial surface prefers to extract electrons from FGS, thus the interfacial bonding also makes a contribution in alleviating the process of corrosion to some extent. More importantly, the Cu2O-FGS nanocomposite based sensor realizes room temperature sensing to H2S with fantastic sensitivity (11%); even at the exposed concentration of 5 ppb, the relative resistance changes show good linearity with the logarithm of the concentration. The enhancement of sensitivity is attributed to the synergistic effect of Cu2O and FGS; on the one hand, surfactant-free capped Cu2O nanocrystals display higher surface activity to adsorb gas molecules, and on the other hand, FGS acting as conducting network presents greater electron transfer efficiency. These observations show that the Cu2O-FGS nanocomposite based sensors have potential applications for monitoring air pollution at room temperature with low cost and power consumption. © 2013 The Royal Society of Chemistry.
Original languageEnglish
Pages (from-to)1564-1569
Number of pages6
Issue number4
Publication statusPublished - 21 Feb 2013
Externally publishedYes

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity'. Together they form a unique fingerprint.

Cite this