Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor

Zhichao Zeng, Xiaomeng Shi, Mingzi Sun, Hongtu Zhang, Wei Luo, Yunhui Huang, Bolong Huang, Yaping Du, Chun Hua Yan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

6 Citations (Scopus)

Abstract

Rare-earth (RE) halide solid electrolytes (HSEs) have been an emerging research area due to their good electrochemical and mechanical properties for all-solid-state lithium batteries (ASSBs). However, only very limited types of HSEs have been reported with high performance. In this work, tens of grams of RE-HSE Li3TbBr6 (LTbB) was synthesized by a vacuum evaporation-assisted method. The as-prepared LTbB displays a high ionic conductivity of 1.7 mS·cm−1, a wide electrochemical window, and good formability. Accordingly, the assembled solid lithium-tellurium (Li-Te) battery based on the LTbB HSE exhibits excellent cycling stability up to 600 cycles, which is superior to most previous reports. The processes and the chemicals during the discharge/charge of Li-Te batteries have been studied by various in situ and ex situ characterizations. Theoretical calculations have demonstrated the dominant conductivity contributions of the direct [octahedral]-[octahedral] ([Oct]–[Oct]) pathway for Li ion migrations in the electrolyte. The Tb sites guarantee efficient electron transfer while the Li 2s orbitals are not affected during migration, leading to a low activation barrier. Therefore, this successful fabrication and application of LTbB have offered a highly competitive solution for solid electrolytes in ASSBs, indicating the great potential of RE-based HSEs in energy devices. [Figure not available: see fulltext.]

Original languageEnglish
JournalNano Research
DOIs
Publication statusAccepted/In press - 2023

Keywords

  • all-solid-state lithium batteries
  • Li-Te solid battery
  • rare-earth halide
  • solid electrolytes
  • superionic conductor

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • General Materials Science
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor'. Together they form a unique fingerprint.

Cite this