TY - JOUR
T1 - Stabilization of dissolvable biochar by soil minerals
T2 - Release reduction and organo-mineral complexes formation
AU - Yang, Fan
AU - Xu, Zibo
AU - Huang, Yuandong
AU - Tsang, Daniel C.W.
AU - Ok, Yong Sik
AU - Zhao, Ling
AU - Qiu, Hao
AU - Xu, Xiaoyun
AU - Cao, Xinde
N1 - Funding Information:
This work was supported in part by the National Natural Science Foundation of China (No. 41907016 , 21537002 , U1906225 ) and State Key Laboratory of Pollution Control and Resource Reuse Foundation (NO. PCRRF19011 ).
Publisher Copyright:
© 2021 Elsevier B.V.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/6/15
Y1 - 2021/6/15
N2 - Biochar has two existing forms in the moist soil environment, free dissolvable biochar (particle size < 0.45 μm) and undissolvable particles (particle size > 0.45 μm). The release and decomposition of dissolvable biochar from bulk biochar particles is a primary C loss pathway in biochar-amended soils, which would be reduced by their interactions with soil minerals. Most previous studies focused on the effect of feedstock types and pyrolysis conditions on dissolvable biochar stability, while few studies researched the interaction between dissolvable biochar and soil components, for instance the soil minerals, and its effect on the stability of dissolvable biochar. In this study, bentonite and goethite were selected as model soil minerals because of their differences in structure and surface types: negatively charged 2:1 type phyllosilicate (bentonite) and positively charged crystalline mineral (goethite). Dry-wet cycling was conducted to determine the effect of these two minerals on the release of dissolvable biochar from walnut shell-derived biochar particles. The stability of dissolvable biochar was measured by chemical oxidation and biodegradation. Both soil minerals reduced the release of dissolvable biochar by over 34% with the presence of Ca2+. Mechanisms of “Ca2+ bridging”, “ligand exchange” and “van der Waals attraction” contributed to the formation of dissolvable biochar-bentonite complexes, and Ca2+ promoted dissolvable biochar inserting into bentonite interlayer space, expanding D-spacing from 1.25 nm to 1.55 nm. However, “Ca2+ bridging” barely formed on goethite because of charge repulsion, indicating that the dissolvable biochar was bound with goethite mainly by “van der Waals attraction” and “ligand exchange”. Due to organo-mineral complexes formation, the chemical oxidation extent of dissolvable biochar was reduced by 22.8–36.5%, and the biodegradation extent was reduced by 72.7–85.0%, since the soil minerals are more effective to prevent the dissolvable biochar from being biodegraded. This study proved soil minerals and Ca2+ were beneficial for enhancing biochar stability, these observations assisted in assessing the biochar ability for long-term carbon sequestration.
AB - Biochar has two existing forms in the moist soil environment, free dissolvable biochar (particle size < 0.45 μm) and undissolvable particles (particle size > 0.45 μm). The release and decomposition of dissolvable biochar from bulk biochar particles is a primary C loss pathway in biochar-amended soils, which would be reduced by their interactions with soil minerals. Most previous studies focused on the effect of feedstock types and pyrolysis conditions on dissolvable biochar stability, while few studies researched the interaction between dissolvable biochar and soil components, for instance the soil minerals, and its effect on the stability of dissolvable biochar. In this study, bentonite and goethite were selected as model soil minerals because of their differences in structure and surface types: negatively charged 2:1 type phyllosilicate (bentonite) and positively charged crystalline mineral (goethite). Dry-wet cycling was conducted to determine the effect of these two minerals on the release of dissolvable biochar from walnut shell-derived biochar particles. The stability of dissolvable biochar was measured by chemical oxidation and biodegradation. Both soil minerals reduced the release of dissolvable biochar by over 34% with the presence of Ca2+. Mechanisms of “Ca2+ bridging”, “ligand exchange” and “van der Waals attraction” contributed to the formation of dissolvable biochar-bentonite complexes, and Ca2+ promoted dissolvable biochar inserting into bentonite interlayer space, expanding D-spacing from 1.25 nm to 1.55 nm. However, “Ca2+ bridging” barely formed on goethite because of charge repulsion, indicating that the dissolvable biochar was bound with goethite mainly by “van der Waals attraction” and “ligand exchange”. Due to organo-mineral complexes formation, the chemical oxidation extent of dissolvable biochar was reduced by 22.8–36.5%, and the biodegradation extent was reduced by 72.7–85.0%, since the soil minerals are more effective to prevent the dissolvable biochar from being biodegraded. This study proved soil minerals and Ca2+ were beneficial for enhancing biochar stability, these observations assisted in assessing the biochar ability for long-term carbon sequestration.
KW - Bentonite
KW - Biochar stability
KW - Ca bridging
KW - Goethite
KW - Intercalated sorption
UR - http://www.scopus.com/inward/record.url?scp=85100054350&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2021.125213
DO - 10.1016/j.jhazmat.2021.125213
M3 - Journal article
AN - SCOPUS:85100054350
SN - 0304-3894
VL - 412
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 125213
ER -