Spiking neuron based cognitive memory model

Qiang Yu, Huajin Tang, Jun Hu, Kay Chen Tan

Research output: Chapter in book / Conference proceedingChapter in an edited book (as author)Academic researchpeer-review

Abstract

Jensen et al. (Learn. Mem. 3(2-3), 245-246, 1996 [1]) proposed an auto-associative memory model using an integrated short-term memory (STM) and long-term memory (LTM) spiking neural network. Their model requires that distinct pyramidal cells encoding different STM patterns are fired in different high-frequency gamma subcycles within each low-frequency theta oscillation. Auto-associative LTM is formed by modifying the recurrent synaptic efficacy between pyramidal cells. In order to store auto-associative LTM correctly, the recurrent synaptic efficacy must be bounded. The synaptic efficacy must be upper bounded to prevent re-firing of pyramidal cells in subsequent gamma subcycles. If cells encoding one memory item were to re-fire synchronously with other cells encoding another item in subsequent gamma subcycle, LTM stored via modifiable recurrent synapses would be corrupted. The synaptic efficacy must also be lower bounded so that memory pattern completion can be performed correctly. This chapter uses the original model by Jensen et al. as the basis to illustrate the following points. Firstly, the importance of coordinated long-term memory (LTM) synaptic modification. Secondly, the use of a generic mathematical formulation (spiking response model) that can theoretically extend the results to other spiking network utilizing threshold-fire spiking neuron model. Thirdly, the interaction of long-term and short-term memory networks that possibly explains the asymmetric distribution of spike density in theta cycle through the merger of STM patterns with interaction of LTM network.

Original languageEnglish
Title of host publicationIntelligent Systems Reference Library
PublisherSpringer Science and Business Media Deutschland GmbH
Pages153-172
Number of pages20
DOIs
Publication statusPublished - 2017
Externally publishedYes

Publication series

NameIntelligent Systems Reference Library
Volume126
ISSN (Print)1868-4394
ISSN (Electronic)1868-4408

ASJC Scopus subject areas

  • General Computer Science
  • Information Systems and Management
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Spiking neuron based cognitive memory model'. Together they form a unique fingerprint.

Cite this