Spectral tomographic imaging with aplanatic metalens

C. Chen, W. Song, J.-W. Chen, J.-H. Wang, Y.H. Chen, B. Xu, M.-K. Chen, H. Li, B. Fang, J. Chen, H.Y. Kuo, S. Wang, Din-ping Tsai, S. Zhu, T. Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

30 Citations (Scopus)

Abstract

© 2019, The Author(s).Tomography is an informative imaging modality that is usually implemented by mechanical scanning, owing to the limited depth-of-field (DOF) in conventional systems. However, recent imaging systems are working towards more compact and stable architectures; therefore, developing nonmotion tomography is highly desirable. Here, we propose a metalens-based spectral imaging system with an aplanatic GaN metalens (NA = 0.78), in which large chromatic dispersion is used to access spectral focus tuning and optical zooming in the visible spectrum. After the function of wavelength-switched tomography was confirmed on cascaded samples, this aplanatic metalens is utilized to image microscopic frog egg cells and shows excellent tomographic images with distinct DOF features of the cell membrane and nucleus. Our approach makes good use of the large diffractive dispersion of the metalens and develops a new imaging technique that advances recent informative optical devices.
Original languageEnglish
Article number99
JournalLight: Science and Applications
Volume8
Issue number1
DOIs
Publication statusPublished - 1 Dec 2019
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Cite this