Spatial-temporal analysis of drink-driving patterns in Hong Kong

Y. C. Li, Nang Ngai Sze, S. C. Wong

Research output: Journal article publicationJournal articleAcademic researchpeer-review

16 Citations (Scopus)

Abstract

Normally, bars and restaurants are the preferred locations for drinking. Therefore, there is concern that the roads in bar and restaurant areas could have a higher probability of drink-drivers and alcohol-related road crashes. Many studies have been conducted to model the association between drinking locations and the prevalence of drink-driving, so that cost-effective enforcement strategies can be developed to combat drink-driving. In this study, a cluster analysis approach was applied to model the spatial-temporal variation of drink-driving distribution in Hong Kong. Six spatial-temporal clusters of drink-driving distribution emerged from the data: (i) bar and restaurant area, weekend-overnight; (ii) bar and restaurant area, other timespan; (iii) urban area, weekend-overnight; (iv) urban area, other timespans; (v) rural area, weekend-overnight; and (vi) rural area, other timespans. Next, separate zero-inflated regression models were established to identify the factors contributing to the prevalence of drink-driving for each of the six recognized clusters. The results indicated that drivers in rural areas tend to consume more alcohol than those in urban areas, regardless of the time period. In addition, both seasonal variation and vehicle class were found to determine the breath alcohol concentration (BrAC) levels among drivers.
Original languageEnglish
Pages (from-to)415-424
Number of pages10
JournalAccident Analysis and Prevention
Volume59
DOIs
Publication statusPublished - 5 Aug 2013
Externally publishedYes

Keywords

  • Cluster analysis
  • Drink-driving
  • Random breath test
  • Zero-inflated regression model

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Safety, Risk, Reliability and Quality
  • Public Health, Environmental and Occupational Health
  • Law

Fingerprint

Dive into the research topics of 'Spatial-temporal analysis of drink-driving patterns in Hong Kong'. Together they form a unique fingerprint.

Cite this