SP-cache: Load-balanced, redundancy-free cluster caching with selective partition

Yinghao Yu, Renfei Huang, Wei Wang, Jun Zhang, Khaled Ben Letaief

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

14 Citations (Scopus)

Abstract

Data-intensive clusters increasingly employ inmemory solutions to improve I/O performance. However, the routinely observed file popularity skew and load imbalance create hot spots, which significantly degrade the benefits of in-memory caching. Common approaches to tame load imbalance include copying multiple replicas of hot files and creating parity chunks using storage codes. Yet, these techniques either suffer from high memory overhead due to cache redundancy or incur nontrivial encoding/decoding complexity. In this paper, we propose an effective approach to achieve load balancing without cache redundancy or encoding/decoding overhead. Our solution, termed SP-Cache, selectively partitions files based on their popularity and evenly caches those partitions across the cluster. We develop an efficient algorithm to determine the optimal number of partitions for a hot file - too few partitions are incapable of mitigating hot spots, while too many are susceptible to stragglers. We implemented SP-Cache in Alluxio, a popular in-memory distributed storage for data-intensive clusters. EC2 deployment and trace-driven simulations show that, compared to the state-of-the-art solution called EC-Cache [1], SP-Cache reduces the file access latency by up to 40% in both the mean and the tail, using 40% less memory.

Original languageEnglish
Title of host publicationProceedings - International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-13
Number of pages13
ISBN (Electronic)9781538683842
DOIs
Publication statusPublished - 11 Nov 2018
Event2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018 - Dallas, United States
Duration: 11 Nov 201816 Nov 2018

Publication series

NameProceedings - International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018

Conference

Conference2018 International Conference for High Performance Computing, Networking, Storage, and Analysis, SC 2018
Country/TerritoryUnited States
CityDallas
Period11/11/1816/11/18

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Networks and Communications
  • Hardware and Architecture
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'SP-cache: Load-balanced, redundancy-free cluster caching with selective partition'. Together they form a unique fingerprint.

Cite this