TY - GEN
T1 - Solving the local minimum and flat-spot problem by modifying wrong outputs for feed-forward neural networks
AU - Cheung, Chi Chung
AU - Lui, Andrew K.
AU - Xu, Sean Shensheng
PY - 2013/8/4
Y1 - 2013/8/4
N2 - Backpropagation (BP) algorithm, which is very popular in supervised learning, is extensively applied in training feed-forward neural networks. Many modifications have been proposed to speed up the convergence process of the standard BP algorithm. However, they seldom focus on improving the global convergence capability. This paper proposes a new algorithm called Wrong Output Modification (WOM) to improve the global convergence capability of a fast learning algorithm. When a learning process is trapped by a local minimum or a flat-spot area, this algorithm looks for some outputs that go to other extremes when compared with their target outputs, and then it modifies such outputs systemically so that they can get close to their target outputs and hence some weights of neurons are changed accordingly. It is hoped that these changes make the learning process escape from such local minima or flat-spot areas and then converge. The performance investigation shows that the proposed algorithm can be applied into different fast learning algorithms, and their global convergence capabilities are improved significantly compared with their original algorithms. Moreover, some statistical data obtained from this algorithm can be used to identify the difficulty of a learning problem.
AB - Backpropagation (BP) algorithm, which is very popular in supervised learning, is extensively applied in training feed-forward neural networks. Many modifications have been proposed to speed up the convergence process of the standard BP algorithm. However, they seldom focus on improving the global convergence capability. This paper proposes a new algorithm called Wrong Output Modification (WOM) to improve the global convergence capability of a fast learning algorithm. When a learning process is trapped by a local minimum or a flat-spot area, this algorithm looks for some outputs that go to other extremes when compared with their target outputs, and then it modifies such outputs systemically so that they can get close to their target outputs and hence some weights of neurons are changed accordingly. It is hoped that these changes make the learning process escape from such local minima or flat-spot areas and then converge. The performance investigation shows that the proposed algorithm can be applied into different fast learning algorithms, and their global convergence capabilities are improved significantly compared with their original algorithms. Moreover, some statistical data obtained from this algorithm can be used to identify the difficulty of a learning problem.
UR - http://www.scopus.com/inward/record.url?scp=84893615513&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2013.6706913
DO - 10.1109/IJCNN.2013.6706913
M3 - Conference article published in proceeding or book
AN - SCOPUS:84893615513
SN - 9781467361293
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2013 International Joint Conference on Neural Networks, IJCNN 2013
T2 - 2013 International Joint Conference on Neural Networks, IJCNN 2013
Y2 - 4 August 2013 through 9 August 2013
ER -