Software Defined Sensing

Deze Zeng, Lin Gu, Shengli Pan, Song Guo

Research output: Chapter in book / Conference proceedingChapter in an edited book (as author)Academic researchpeer-review


After a decade of extensive research on application-specific WSNs, the recent development of information and communication technologies makes it practical to realize SDSNs, which are able to adapt to various application requirements and to fully explore the resources of WSNs. A sensor node in SDSN is able to conduct multiple tasks with different sensing targets simultaneously. A given sensing task usually involves multiple sensors to achieve a certain quality-of-sensing, e.g., coverage ratio. It is significant to design an energy-efficient sensor scheduling and management strategy with guaranteed quality-of-sensing for all tasks. To this end, three issues shall be considered: (1) the subset of sensor nodes that shall be activated, i.e., sensor activation, (2) the task that each sensor node shall be assigned, i.e., task mapping, and (3) the sampling rate on a sensor for a target, i.e., sensing scheduling. In this chapter, they are jointly considered and formulated as a mixed-integer with quadratic constraints programming (MIQP) problem, which is then reformulated into a mixed-integer linear programming (MILP) formulation with low computation complexity via linearization. To deal with dynamic events such as sensor node participation and departure, during SDSN operations, an efficient online algorithm using local optimization is developed. Simulation results show that the proposed online algorithm approaches the globally optimized network energy efficiency with much lower rescheduling time and control overhead.

Original languageEnglish
Title of host publicationSpringerBriefs in Computer Science
Number of pages19
Publication statusPublished - 2020

Publication series

NameSpringerBriefs in Computer Science
ISSN (Print)2191-5768
ISSN (Electronic)2191-5776

ASJC Scopus subject areas

  • General Computer Science


Dive into the research topics of 'Software Defined Sensing'. Together they form a unique fingerprint.

Cite this