TY - JOUR
T1 - Soft-chemical synthesis and tunable luminescence of Tb3+, Tm3+/Dy3+-doped SrY2O4 phosphors for field emission displays
AU - Zhang, Yang
AU - Geng, Dongling
AU - Shang, Mengmeng
AU - Zhang, Xiao
AU - Li, Xuejiao
AU - Cheng, Ziyong
AU - Lian, Hongzhou
AU - Lin, Jun
PY - 2013/4/14
Y1 - 2013/4/14
N2 - Tb3+, Tm3+, and Dy3+-activated SrY 2O4 phosphors have been prepared via Pechini-type sol-gel method. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) and lifetimes, as well as cathodoluminescence (CL) spectra were used to characterize the samples. Under low-voltage electron beam excitation, the Tb 3+-doped samples show a green luminescence, with a better CIE coordinates and higher emission intensity than the commercial product ZnO: Zn. Blue and yellow emissions could be obtained by doping with Tm3+ and Dy3+, respectively. A color-tunable emission in SrY2O 4 phosphors can be realized by co-doping with Tm3+ and Dy3+. White cathodoluminescence (CL) has been realized in a single-phase SrY2O4 host by co-doping with Tm3+ and Dy3+ for the first time with CIE (0.315, 0.333). Furthermore, the cathodoluminescence (CL) properties of SrY2O4: Tb 3+/Tm3+/Dy3+ phosphors including the dependence of CL intensity on accelerating voltage and filament current, the decay behaviour of CL intensity under electron bombardment, and the stability of CIE chromaticity coordinate have been investigated in detail. The as-prepared phosphors might be promising for use in field-emission display (FED) devices.
AB - Tb3+, Tm3+, and Dy3+-activated SrY 2O4 phosphors have been prepared via Pechini-type sol-gel method. X-Ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) and lifetimes, as well as cathodoluminescence (CL) spectra were used to characterize the samples. Under low-voltage electron beam excitation, the Tb 3+-doped samples show a green luminescence, with a better CIE coordinates and higher emission intensity than the commercial product ZnO: Zn. Blue and yellow emissions could be obtained by doping with Tm3+ and Dy3+, respectively. A color-tunable emission in SrY2O 4 phosphors can be realized by co-doping with Tm3+ and Dy3+. White cathodoluminescence (CL) has been realized in a single-phase SrY2O4 host by co-doping with Tm3+ and Dy3+ for the first time with CIE (0.315, 0.333). Furthermore, the cathodoluminescence (CL) properties of SrY2O4: Tb 3+/Tm3+/Dy3+ phosphors including the dependence of CL intensity on accelerating voltage and filament current, the decay behaviour of CL intensity under electron bombardment, and the stability of CIE chromaticity coordinate have been investigated in detail. The as-prepared phosphors might be promising for use in field-emission display (FED) devices.
UR - http://www.scopus.com/inward/record.url?scp=84875026630&partnerID=8YFLogxK
U2 - 10.1039/c2dt32592f
DO - 10.1039/c2dt32592f
M3 - Journal article
AN - SCOPUS:84875026630
SN - 1477-9226
VL - 42
SP - 4799
EP - 4808
JO - Dalton Transactions
JF - Dalton Transactions
IS - 14
ER -