Abstract
© 2017, The Author(s).Treatment with sodium tanshinone IIA sulfonate (STS) may ameliorate blood-brain barrier (BBB) damage in acute ischemic stroke patients receiving recombinant tissue plasminogen activator (rt-PA) thrombolysis and improve stroke patients' outcome. This randomized, single-center, placebo-controlled clinical trial investigated the potential effects and underlying mechanisms of STS. Forty-two acute ischemic stroke patients receiving intravenous rt-PA thrombolysis were randomized to intravenous administration either with STS (60 mg/day) (n = 21) or with equivalent volume of saline as a placebo (n = 21) after randomization for 10 days. Clinical outcomes, computer tomography perfusion (CTP) imaging with permeability-surface area product (PS) maps and serum levels of BBB damage biomarkers, were compared between the two groups. The percentage of patients with excellent functional outcome indicated by a 90-day mRS ?1 was significantly higher in the STS group than in the placebo group (p = 0.028). For patients with CTP imaging (n = 30), PS in the ipsilateral lesion (p = 0.034) and relative PS (p = 0.013) were significantly lower in the STS group than that in placebo. STS-treated patients also had lower levels of matrix metalloproteinase (MMP)-9 (p = 0.036) and claudin-5 (p = 0.026), but higher levels of tissue inhibitor of metalloproteinase (TIMP)-1 (p = 0.040) than those in the placebo group. Post-stroke STS treatment could improve neurologic functional outcomes for acute ischemic stroke patients following rt-PA treatment by reducing BBB leakage and damage, which might be mechanistically associated with MMP-9 inhibition.
Original language | English |
---|---|
Pages (from-to) | 334-340 |
Number of pages | 7 |
Journal | Translational Stroke Research |
Volume | 8 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Aug 2017 |
Externally published | Yes |
Keywords
- Blood-brain barrier
- CT perfusion
- Permeability surface
- Sodium tanshinone IIA sulfonate
- Thrombolysis
ASJC Scopus subject areas
- General Neuroscience
- Clinical Neurology
- Cardiology and Cardiovascular Medicine