Sludge-derived biochar for arsenic(III) immobilization: Effects of solution chemistry on sorption behavior

Weihua Zhang, Juan Zheng, Pingping Zheng, Daniel C.W. Tsang, Rongliang Qiu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

57 Citations (Scopus)


Recycling sewage sludge by pyrolysis has attracted increasing attention for pollutant removal from wastewater and soils. This study scrutinized As(III) sorption behavior on sludge-derived biochar (SDBC) under different pyrolysis conditions and solution chemistry. The SDBC pyrolyzed at a higher temperature showed a lower As(III) sorption capacity and increasingly nonlinear isotherm due to loss of surface sites and deoxygenation-dehydrogenation. The Langmuir sorption capacity on SDBC (3.08-6.04 mg g-1) was comparable to other waste-derived sorbents, with the highest As(III) sorption on SDBC pyrolyzed at 400°C for 2 h. The As(III) sorption kinetics best fit with the pseudo-second-order equation, thus suggesting the significance of the availability of surface sites and initial concentration. Sorption of As(III) was faster than that of Cr(VI) but slower than that of Pb(II), which was attributed to their differences in molar volume (correlated to diffusion coefficients) and sorption mechanisms. The X-ray photoelectron spectra revealed an increase of oxide oxygen (O2-) with a decrease of sorbed water, indicative of ligand exchange with hydroxyl groups on SDBC surfaces. The As(III) sorption was not pH dependent in acidic-neutral range (pH < 8) due to the buffering capacity and surface characteristics of the SDBC; however, sorption was promoted by increasing pH in the alkaline range (pH > 8) because of As(III) speciation in solution. An increasing ionic strength (0.001-0.1 mol L-1) facilitated As(III) sorption, indicating the predominance of ligand exchange over electrostatic interactions, while high concentrations (0.1 mol L-1) of competing anions (fluoride, sulfate, carbonate, and phosphate) inhibited As(III) sorption. These results suggest that SDBC is applicable for As(III) immobilization in most environmentally relevant conditions.
Original languageEnglish
Pages (from-to)1119-1126
Number of pages8
JournalJournal of Environmental Quality
Issue number4
Publication statusPublished - 1 Jan 2015

ASJC Scopus subject areas

  • Environmental Engineering
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Sludge-derived biochar for arsenic(III) immobilization: Effects of solution chemistry on sorption behavior'. Together they form a unique fingerprint.

Cite this