Skin-Integrated Graphene-Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing

Yiming Liu, Ling Zhao, Lingyun Wang, Huanxi Zheng, Dengfeng Li, Raudel Avila, King W.C. Lai, Zuankai Wang, Zhaoqian Xie, Yunlong Zi, Xinge Yu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

60 Citations (Scopus)

Abstract

Thin, soft, skin-like electronics capable of transforming body mechanical motions to electrical signals have broad potential applications in biosensing and energy harvesting. Forming piezoelectric materials into flexible and stretchable formats and integrating with soft substrate would be a considerable strategy for this aspect. Here, a skin-integrated rubbery electronic device that associates with a simple low-cost fabrication method for a ternary piezoelectric rubber composite of graphene, lead zirconate tinanate (PZT), and polydimethylsiloxane (PDMS) is introduced. Comparing to the binary composite that blend with PZT and PDMS, the graphene-embedded ternary composite exhibits a significant enhancement of self-powered behavior, with a maximum power density of 972.43 µW cm−3 under human walking. Combined experimental and theoretical studies of the graphene-embedded PZT rubber allow the skin-integrated electronic device to exhibit excellent mechanical tolerance to bending, stretching, and twisting for thousands of cycles. Customized device geometries guided by optimized mechanical design enable a more comprehensive integration of the rubbery electronics with the human body. For instance, annulus-shape devices can perfectly mount on the joints and ensure great power output and stability under continuous and large deformations. This work demonstrates the potential of large-area, skin-integrated, self-powered electronics for energy harvesting as well as human health related mechanical sensing.

Original languageEnglish
Article number1900744
JournalAdvanced Materials Technologies
Volume4
Issue number12
DOIs
Publication statusPublished - 1 Dec 2019
Externally publishedYes

Keywords

  • energy harvesting
  • flexible electronics
  • PZT
  • rubbery electronics
  • skin-integrated electronics

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Skin-Integrated Graphene-Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing'. Together they form a unique fingerprint.

Cite this