Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its modelling

Taiyang Huang, Jianong Li, Yongxin Xie, Jianlei Niu, Cheuk Ming Mak

Research output: Journal article publicationJournal articleAcademic researchpeer-review

56 Citations (Scopus)

Abstract

The elevated building design is believed to be able to create some localized comfort spots at precinct scale, but no researches on pedestrians’ thermal perceptions in the area underneath an elevated building (UEB) have been reported. In this study, simultaneous on-site meteorological measurements and questionnaire surveys of 1107 human subjects were conducted in a university campus in Hong Kong. Three outdoor thermal comfort models, PET, UTCI and UC-Berkeley model, were compared. The survey results indicate that the UEB area is significantly (α = 0.05) more comfortable in hot weather without extra discomfort in cold weather. All three models outputs correlate well with the subjects’ mean thermal sensation votes in linear regression (R2≈ 0.9). Yet, shifts in neutral indices (6.2 K, 5.8 K and 1.1 respectively for PET, UCTI and UC-Berkeley model) appeared when comparing the correlation results separately for the UEB areas and open areas, indicating that the impacts of solar radiation and wind or the lack of them on pedestrian's thermal comfort perceptions have not been well predicted by the three models. These investigations, on the one hand, characterize the benefits that elevated building designs have on the pedestrian-level microclimate and provide references and inspirations for urban planners to enhance pedestrian thermal comfort by altering building designs; on the other hand, indicate the need to refine the thermal comfort models for better outdoor thermal comfort assessment.
Original languageEnglish
Pages (from-to)502-514
Number of pages13
JournalBuilding and Environment
Volume125
DOIs
Publication statusPublished - 15 Nov 2017

Keywords

  • On-site measurement
  • Outdoor thermal comfort
  • Questionnaire survey
  • Thermal comfort assessing model
  • Underneath-elevated-building area

ASJC Scopus subject areas

  • Environmental Engineering
  • Civil and Structural Engineering
  • Geography, Planning and Development
  • Building and Construction

Cite this