Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture

Tielong Han, Chao Hou, Zhi Zhao, Zengbao Jiao, Yurong Li, Shuang Jiang, Hao Lu, Haibin Wang, Xuemei Liu, Zuoren Nie, Xiaoyan Song

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Simultaneous improvement of strength and conductivity is urgently demanded but challenging for bimetallic materials. Here we show by creating a self-assembled lamellar (SAL) architecture in W-Cu system, enhancement in strength and electrical conductivity is able to be achieved at the same time. The SAL architecture features alternately stacked Cu layers and W lamellae containing high-density dislocations. This unique layout not only enables predominant stress partitioning in the W phase, but also promotes hetero-deformation induced strengthening. In addition, the SAL architecture possesses strong crack-buffering effect and damage tolerance. Meanwhile, it provides continuous conducting channels for electrons and reduces interface scattering. As a result, a yield strength that doubles the value of the counterpart, an increased electrical conductivity, and a large plasticity were achieved simultaneously in the SAL W-Cu composite. This study proposes a flexible strategy of architecture design and an effective method for manufacturing bimetallic composites with excellent integrated properties.

Original languageEnglish
Article number1863
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture'. Together they form a unique fingerprint.

Cite this