TY - JOUR
T1 - Simulation of liquid transfer between the plate and the groove
AU - Zhou, Nan
AU - Zhao, Jiayi
AU - Chen, Shuo
AU - Liu, Yang
AU - Zhang, Kaixuan
N1 - Funding Information:
This work was supported by the National Natural Science Foundation of China (Grant No. 11872283). The grant is gratefully acknowledged.
Publisher Copyright:
© 2020 World Scientific Publishing Company.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10/30
Y1 - 2020/10/30
N2 - The transfer of the liquid from groove to plate is significantly affected by the breakup process of liquid bridge, which is the core problem of gravure. In this paper, many-body dissipative particle dynamics method (MDPD) is used to simulate the behaviors of the stretching liquid cylinder between the plate and the groove, and the influence of surface wettability, stretching velocity and groove structure on the liquid cylinder rupture and the transfer rate of liquid are studied. The results show that both of the slipping velocity of the contact line on the plate and the thinning velocity of the liquid cylinder determine the breakup state of the liquid bridges and the liquid transfer rate from the groove to the plate. In the cases with the same surface wettability, at high hydrophilicity surface, the transfer rate increases firstly and then decreases with the increase of the stretching velocity. In the cases with different surface wettability of the plate and the groove, reducing the stretching velocity and the inclination angle of the groove are helpful to pull the liquid out of the groove and increase the transfer rate, and it could also be achieved by increasing the wettability of the plate and decreasing the wettability of the groove. This study provides some new insights into the effects of surface wettability, stretching velocity and groove structure on the dynamics of breakup process and liquid transfer in stretching.
AB - The transfer of the liquid from groove to plate is significantly affected by the breakup process of liquid bridge, which is the core problem of gravure. In this paper, many-body dissipative particle dynamics method (MDPD) is used to simulate the behaviors of the stretching liquid cylinder between the plate and the groove, and the influence of surface wettability, stretching velocity and groove structure on the liquid cylinder rupture and the transfer rate of liquid are studied. The results show that both of the slipping velocity of the contact line on the plate and the thinning velocity of the liquid cylinder determine the breakup state of the liquid bridges and the liquid transfer rate from the groove to the plate. In the cases with the same surface wettability, at high hydrophilicity surface, the transfer rate increases firstly and then decreases with the increase of the stretching velocity. In the cases with different surface wettability of the plate and the groove, reducing the stretching velocity and the inclination angle of the groove are helpful to pull the liquid out of the groove and increase the transfer rate, and it could also be achieved by increasing the wettability of the plate and decreasing the wettability of the groove. This study provides some new insights into the effects of surface wettability, stretching velocity and groove structure on the dynamics of breakup process and liquid transfer in stretching.
KW - contact line
KW - liquid cylinder
KW - Many-body dissipative particle dynamics
KW - slip velocity
UR - http://www.scopus.com/inward/record.url?scp=85095116887&partnerID=8YFLogxK
U2 - 10.1142/S0217984920503315
DO - 10.1142/S0217984920503315
M3 - Journal article
AN - SCOPUS:85095116887
SN - 0217-9849
VL - 34
JO - Modern Physics Letters B
JF - Modern Physics Letters B
IS - 30
M1 - 2050331
ER -