Silver nanoparticle-decorated graphene oxide for surface-enhanced Raman scattering detection and optical limiting applications

Lili Tao, Yajun Lou, Yu Zhao, Mingming Hao, Yibin Yang, Ye Xiao, Yuen Hong Tsang, Jingbo Li

Research output: Journal article publicationJournal articleAcademic researchpeer-review

17 Citations (Scopus)

Abstract

Silver nanoparticle-decorated graphene oxide was prepared using a simple green chemical reduction method, and its performance being used for surface-enhanced Raman scattering detection and optical limiting was studied. TEM images, photoluminescence quenching effect and the characteristic absorption peaks of GO and silver nanoparticles confirm the successful preparation of GO–Ag nanocomposite. The Raman spectra results show that the vibration fingerprints of RhB and R6G moleculars are detected only on the GO–Ag substrate, revealing good potential of being used as surface-enhanced Raman scattering substrate for detecting organic molecules. Additionally, nonlinear optical absorption of GO–Ag was measured using z-scan technique with a nanosecond laser operating at the wavelength of 532 nm. The z-scan results show that the transmittance of GO–Ag aqueous suspension has a large decline of 90%, and the nonlinear optical absorption onset input fluence of GO–Ag dispersed PVA film is as low as 1.3 J/cm2, indicating that GO–Ag is a good potential optical limiting material for the commonly used high-power 532 nm nanosecond pulsed laser.
Original languageEnglish
Pages (from-to)573-580
Number of pages8
JournalJournal of Materials Science
Volume53
Issue number1
DOIs
Publication statusPublished - 1 Jan 2018

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Silver nanoparticle-decorated graphene oxide for surface-enhanced Raman scattering detection and optical limiting applications'. Together they form a unique fingerprint.

Cite this