Abstract
Colloidal silica particles were synthesized by the sol-gel process and then modified with 3-methacryloxypropyltrimethoxysilane (γ-MPS) to induce vinyl groups on the surface of the silica particles. By means of in situ emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BA), a series of core-shell silica hybrid particles with nanometre poly(MMA-co-BA) shells were fabricated, which were subsequently compounded with isotactic polypropylene (PP) in the molten state. Upon increasing the feed silica:monomer ratio from 1:1 to 4:1, the poly(MMA-co-BA) shell thickness on the silica core decreased from 50 nm to 10 nm. Owing to the existence of the nanometre poly(MMA-co-BA) shells, the silica hybrid particles were monodispersed in the PP matrix, causing homogeneous debonding at the PP/silica interface, followed by plastic void expansion and matrix shear yielding during impact fracture. These deformation mechanisms greatly toughened the PP-silica composites. A critical shell thickness of poly(MMA-co-BA) was needed to achieve optimal mechanical properties. That is, when the polymer shell thickness was 15 nm, compared to pure PP, the impact toughness of the PP-silica composite was more than doubled with little degradation of tensile strength.
Original language | English |
---|---|
Pages (from-to) | 2269-2274 |
Number of pages | 6 |
Journal | Nanoscale |
Volume | 2 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- General Materials Science