Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids

Lanling Zhao, Sheik Md Kazi Nazrul Islam, Jun Wang, David L. Cortie, Xungai Wang, Zhenxiang Cheng, Jiyang Wang, Ning Ye, Shixue Dou, Xun Shi, Lidong Chen, G. Jeffrey Snyder, Xiaolin Wang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

114 Citations (Scopus)

Abstract

Liquid-like ionic conductors in the copper selenide family represent a promising class of thermoelectric materials capable of recycling waste heat into electrical energy with an exemplary figure-of-merit (zT > 1.4) above 800 K. Ion diffusion, however, is enhanced at such high temperatures and drives a non-reversible phase segregation that inhibits practical applications. In tandem, the thermoelectric performance at moderate temperatures (500–750 K) where ion diffusion is less problematic, is not optimal for real-world applications (zT < 1). In this work, we demonstrate that incorporating a small weight fraction of carbon using various carbon sources can significantly enhance the zT of Cu2Se at both middle and high temperatures. All the carbon-doped Cu2Se samples exhibit weak temperature dependent zT higher than 1.0 over a broad temperature range from 600 to 900 K, with the 0.6 wt% Super P doped Cu2Se sample achieving a zT of 1.85 at 900 K. Furthermore, the 0.3 wt% carbon fiber doped Cu2Se shows zT > 1 for T > 520 K and reaches a record level of zT of ~ 2.4 at 850 K. These values for the carbon doped Cu2Se are comparable or superior to those for the current state-of-the-art thermoelectric materials. Microstructure studies on graphite incorporated Cu2Se revealed that graphite nanostructures interspace between Cu2Se nanoscale grains being responsible for the significantly enhanced zT. The low thermal conductivity in the nanostructured composite is attributed to the high density of interfaces caused by the small grain diameters (30–60 nm), along with the strong acoustic mismatch between Cu2Se and carbon phonon states which enhances the thermal boundary resistance. This discovery indicates strong prospects for engineering carbon thermoelectric nanocomposites for a range of energy applications.

Original languageEnglish
Pages (from-to)164-171
Number of pages8
JournalNano Energy
Volume41
DOIs
Publication statusPublished - Nov 2017
Externally publishedYes

Keywords

  • Carbon
  • Copper selenide
  • Nanocrystalline
  • Thermoelectric
  • zT

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Significant enhancement of figure-of-merit in carbon-reinforced Cu2Se nanocrystalline solids'. Together they form a unique fingerprint.

Cite this