Abstract
State-of-the-art speaker verification systems take frame-level acoustics features as input and produce fixed-dimensional embeddings as utterance-level representations. Thus, how to aggregate information from frame-level features is vital for achieving high performance. This paper introduces short-time spectral pooling (STSP) for better aggregation of frame-level information. STSP transforms the temporal feature maps of a speaker embedding network into the spectral domain and extracts the lowest spectral components of the averaged spectrograms for aggregation. Benefiting from the low-pass characteristic of the averaged spectrograms, STSP is able to preserve most of the speaker information in the feature maps using a few spectral components only. We show that statistics pooling is a special case of STSP where only the DC spectral components are used. Experiments on VoxCeleb1 and VOiCES 2019 show that STSP outperforms statistics pooling and multi-head attentive pooling, which suggests that leveraging more spectral information in the CNN feature maps can produce highly discriminative speaker embeddings.
Original language | English |
---|---|
Pages (from-to) | 6708-6712 |
Number of pages | 5 |
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 2021-June |
DOIs | |
Publication status | Published - Jun 2021 |
Event | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada Duration: 6 Jun 2021 → 11 Jun 2021 |
Keywords
- Speaker embedding
- Speaker verification
- Spectral pooling
- Statistics pooling
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering