Abstract
The emission profile and lifetime dynamics of semiconductor quantum dots can be significantly shaped and altered using dielectric and plasmonic nanostructures based on anodic aluminum oxide templates. Remarkable spectral modification and a large total decay rate enhancement in the photoluminescence of quantum dots are observed when they are deposited on a pristine anodic aluminum oxide template. The modified emission spectral profile is consistent with the calculated photonic local density of states above the anodic aluminum oxide template surface, suggesting that this interesting spectral tuning phenomenon stems from the surface electromagnetic modes supported by the anodic aluminum oxide template. Furthermore, when the anodic aluminum oxide template is loaded with metallic nanowires that sustain plasmon resonances, the photoluminescence of the quantum dots can be largely enhanced. These unprecedented results suggest that the anodic aluminum oxide template can be used as a versatile platform for tailoring the photoluminescence properties of quantum emitters in future photonic and optoelectronic applications. KGaA, Weinheim.
Original language | English |
---|---|
Pages (from-to) | 56-64 |
Number of pages | 9 |
Journal | Advanced Optical Materials |
Volume | 2 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2014 |
Keywords
- Anodic aluminum oxide templates
- Photoluminescence
- Photonic local density of states
- Quantum dots
- Spectral shaping
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics