Sensorless Coordination Control Scheme for Distributed Dual CLF-PM Wheel-Side Motors Drive Electric Vehicles

Xiaoyong Zhu, Xiaonan Yang, Li Zhang, Yuze Wu, Wen Hua Chen, Shihong Ding, Yue Shen

Research output: Journal article publicationJournal articleAcademic researchpeer-review

Abstract

Endowed with numerous merits, the distributed dual wheel-side motors drive has emerged as a promising drive method for electric vehicles (EVs). Owing to the advantages of high torque and wide speed range, the controllable leakage flux permanent magnet (CLF-PM) motor is an ideal motor for EVs. Yet, EVs usually face position sensor failure under complicate environment and harsh conditions, which makes the sensorless coordination control a reliable means. However, most previous studies regarding coordination control may neglect the inherent limitations of sensorless systems, leading to the instability of system. In this study, a sensorless coordination control scheme for distributed dual CLF-PM wheel-side motors drive EV is proposed to ensure the stable operation of EVs, which consists of control structure and strategy. First, a proportional synchronous cross-coupling coordination control (PSCCC) structure based on the Ackermann module is proposed to meet the electrical differential requirement with less computational complexity under sensorless control. Additionally, to effectively attenuate disturbances, a nonlinear disturbance observer (NDO)-based sliding mode coordination control (SMCC) strategy is designed, which directly minimizes the synchronization error overshoot by 88.3% and lowers the adjustment time by 86.1% under external loads. Finally, the validity of the proposed control scheme is verified by experimental results.

Original languageEnglish
Pages (from-to)1-12
JournalIEEE Transactions on Industrial Electronics
DOIs
Publication statusPublished - May 2025
Externally publishedYes

Keywords

  • Controllable leakage flux-permanent magnet motor (CLF-PMM)
  • Coordination antidisturbance
  • dual wheel-side motors
  • electronic differential
  • sensorless coordination control

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Sensorless Coordination Control Scheme for Distributed Dual CLF-PM Wheel-Side Motors Drive Electric Vehicles'. Together they form a unique fingerprint.

Cite this