Abstract
This paper presents a sensor placement optimization strategy with the purpose of damage detection from modal strain energy change. Firstly, the damage detection method is introduced, in which damage is localized from the change of the modal strain energy before and after the occurrence of the damage. Then, the sensor placement configuration is selected as the one that contributes most to the modal strain energy change. The Pareto optimal solution theory is applied to find the optimal solution for a multi-objective optimization problem where more than one member or DOF are considered critical and need monitoring. The proposed sensor placement strategy is in line with the damage detection strategy, so that the sensor placement configuration is capable of providing the as much useful data as possible and the effectiveness of the damage detection can be maximized. The method is eventually applied to a reduced-order finite element model of the Canton Tower to find the optimal sensor placement.
Original language | English |
---|---|
Title of host publication | [Missing Source Name from PIRA] |
Publisher | Department of Civil and Structural Engineering and Department of Mechanical Engineering, The Hong Kong Polytechnic University. |
ISBN (Print) | 9789623677318 |
Publication status | Published - Dec 2011 |
Keywords
- Sensor placement
- Modal strain energy change
- Damage detection
- Pareto optimal solution