Semi-supervised learning framework for oil and gas pipeline failure detection

Mohammad H. Alobaidi, Mohamed A. Meguid, Tarek Zayed

Research output: Journal article publicationJournal articleAcademic researchpeer-review

11 Citations (Scopus)

Abstract

Quantifying failure events of oil and gas pipelines in real- or near-real-time facilitates a faster and more appropriate response plan. Developing a data-driven pipeline failure assessment model, however, faces a major challenge; failure history, in the form of incident reports, suffers from limited and missing information, making it difficult to incorporate a persistent input configuration to a supervised machine learning model. The literature falls short on the development of appropriate solutions to utilize incomplete databases and incident reports in the pipeline failure problem. This work proposes a semi-supervised machine learning framework which mines existing oil and gas pipeline failure databases. The proposed cluster-impute-classify (CIC) approach maps a relevant subset of the failure databases through which missing information in the incident report is reconstructed. A classifier is then trained on the fly to learn the functional relationship between the descriptors from a diverse feature set. The proposed approach, presented within an ensemble learning architecture, is easily scalable to various pipeline failure databases. The results show up to 91% detection accuracy and stable generalization ability against increased rate of missing information.

Original languageEnglish
Article number13758
JournalScientific Reports
Volume12
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Semi-supervised learning framework for oil and gas pipeline failure detection'. Together they form a unique fingerprint.

Cite this