Semantic Feature Mining for 3D Object Classification and Segmentation

Weihao Lu, Dezong Zhao, Cristiano Premebida, Wen Hua Chen, Daxin Tian

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Deep learning on 3D point clouds has drawn much attention, due to its large variety of applications in intelligent perception for automated and robotic systems. Unlike structured 2D images, it is challenging to extract features and implement convolutional networks over these unordered points. Although a number of previous works achieved high accuracies for point cloud recognition, they tend to process local point information in such a way that semantic information is not fully encoded. In this paper, we propose a deep neural network for 3D point cloud processing that utilizes effective feature aggregation methods emphasizing both generalizability and relevance. In particular, our method uses fixed-radius grouping for pooling layers and spherical kernel convolution for semantics mining. To address the issue of gradient degradation and memory consumption of a deep network, a parallel feature feed-forward mechanism and bottleneck layers are implemented to reduce the number of parameters. Experiments show that our algorithm achieves state-of-the-art results and competitive accuracy in both classification and part segmentation while maintaining an efficient architecture.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13539-13545
Number of pages7
ISBN (Electronic)9781728190778
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Semantic Feature Mining for 3D Object Classification and Segmentation'. Together they form a unique fingerprint.

Cite this