Self-regenerative field emission source

Masaki Tanemura, J. Tanaka, K. Itoh, T. Okita, L. Miao, S. Tanemura, Shu Ping Lau, L. Huang, Y. Agawa, M. Kitazawa

Research output: Journal article publicationJournal articleAcademic researchpeer-review

20 Citations (Scopus)


A self-regenerative field emission source was demonstrated. The emission source (cathode) consisted of carbon nanofibers (CNFs) grown on the tip of conical carbon protrusions on a graphite plate. CNFs were ∼25 nm in diameter, 0.3-2.5 μm in length and ∼1× 106 mm-2 in site density. Initial emission characteristics showed a threshold field of 3.05 Vμm with a current density of 1 μA cm2 and a field enhancement factor of 2860 from the Fowler-Nordheim plot assuming the work function of 4.6 eV for graphite. A lifetime test carried out for more than 40 h at a constant applied electric field of 10 Vμm in 10-4 Pa region disclosed a stable emission with a current density of 1.7-3.0× 10-4 A cm2 after a slight initial decrease in the emission current. Detailed morphological observations revealed that a thick layer of newly grown carbon fibers was formed on the cathode surface after the lifetime test which could be responsible for the observed stable and long-sustained emission under a nonultrahigh vacuum condition. Their growth was attributed to the surface diffusion of carbon atoms generated by sputtering of the carbon cathode with ionized residual gas molecules during the field emission process. Thus, the CNF-tipped carbon emitter was believed to be promising as a practical field electron emission source used under low vacuum.
Original languageEnglish
Article number193102
Pages (from-to)1-3
Number of pages3
JournalApplied Physics Letters
Issue number19
Publication statusPublished - 7 Nov 2005
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Self-regenerative field emission source'. Together they form a unique fingerprint.

Cite this