TY - GEN
T1 - Self-adaptive PSRO: Towards an Automatic Population-based Game Solver
AU - Li, Pengdeng
AU - Li, Shuxin
AU - Yang, Chang
AU - Wang, Xinrun
AU - Huang, Xiao
AU - Chan, Hau
AU - An, Bo
N1 - Publisher Copyright:
© 2024 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2024/8
Y1 - 2024/8
N2 - Policy-Space Response Oracles (PSRO) as a general algorithmic framework has achieved state-of-the-art performance in learning equilibrium policies of two-player zero-sum games. However, the hand-crafted hyperparameter value selection in most of the existing works requires extensive domain knowledge, forming the main barrier to applying PSRO to different games. In this work, we make the first attempt to investigate the possibility of self-adaptively determining the optimal hyperparameter values in the PSRO framework. Our contributions are three-fold: (1) Using several hyperparameters, we propose a parametric PSRO that unifies the gradient descent ascent (GDA) and different PSRO variants. (2) We propose the self-adaptive PSRO (SPSRO) by casting the hyperparameter value selection of the parametric PSRO as a hyperparameter optimization (HPO) problem where our objective is to learn an HPO policy that can self-adaptively determine the optimal hyperparameter values during the running of the parametric PSRO. (3) To overcome the poor performance of online HPO methods, we propose a novel offline HPO approach to optimize the HPO policy based on the Transformer architecture. Experiments on various two-player zero-sum games demonstrate the superiority of SPSRO over different baselines.
AB - Policy-Space Response Oracles (PSRO) as a general algorithmic framework has achieved state-of-the-art performance in learning equilibrium policies of two-player zero-sum games. However, the hand-crafted hyperparameter value selection in most of the existing works requires extensive domain knowledge, forming the main barrier to applying PSRO to different games. In this work, we make the first attempt to investigate the possibility of self-adaptively determining the optimal hyperparameter values in the PSRO framework. Our contributions are three-fold: (1) Using several hyperparameters, we propose a parametric PSRO that unifies the gradient descent ascent (GDA) and different PSRO variants. (2) We propose the self-adaptive PSRO (SPSRO) by casting the hyperparameter value selection of the parametric PSRO as a hyperparameter optimization (HPO) problem where our objective is to learn an HPO policy that can self-adaptively determine the optimal hyperparameter values during the running of the parametric PSRO. (3) To overcome the poor performance of online HPO methods, we propose a novel offline HPO approach to optimize the HPO policy based on the Transformer architecture. Experiments on various two-player zero-sum games demonstrate the superiority of SPSRO over different baselines.
UR - http://www.scopus.com/inward/record.url?scp=85196939537&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85196939537
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 139
EP - 147
BT - Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
A2 - Larson, Kate
PB - International Joint Conferences on Artificial Intelligence
T2 - 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Y2 - 3 August 2024 through 9 August 2024
ER -