Abstract
Ti3C2Tx MXene shows great promise as a supercapacitor electrode material owing to its high conductivity and pseudocapacitive nature. Phosphorus doping is an efficient strategy to boost its capacitance due to the synergistic effect of the P-O and P-C species formed. However, the contribution to enhanced capacitance from specific phosphorus doped species in P-doped Ti3C2Tx remains largely unexplored. Herein, phosphorus atoms are selectively grafted onto Ti3C2Tx MXene, introducing only P-O doped species and how this doping configuration contributes to capacitance is unraveled. The results show that 2.1 at% P-doped Ti3C2Tx delivers a capacitance enhancement of 35% (437 F g−1 at 2 mV s−1) in comparison with pristine MXene and outstanding cycling stability. Multiple in situ and ex situ characterization studies along with DFT calculations collectively reveal that the formed P-O bonds are new active sites for a two-proton bonding-debonding process, leading to enhanced charge storage and capacitive performance in MXene. However, higher surface phosphorus doping would destroy crystal integrity of MXene and leads to performance deterioration.
Original language | English |
---|---|
Pages (from-to) | 3449-3459 |
Number of pages | 11 |
Journal | Journal of Materials Chemistry A |
Volume | 12 |
Issue number | 6 |
DOIs | |
Publication status | Published - 28 Dec 2023 |
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science