TY - JOUR
T1 - Seismic resilience of corroded mid-rise reinforced concrete structures under mainshock-aftershock sequences
AU - Zhou, Zhou
AU - Han, Miao
AU - Dong, You
AU - Yu, Xiaohui
N1 - Funding Information:
This work was supported in part by the Project funded by the China Postdoctoral Science Foundation (2022M710333), the National Science Foundation of China (52278492), and the National Key R&D Program of China (2019YFC1509505-02). The opinions and findings presented are those of the writers and do not necessarily reflect the views of the sponsor.
Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/8/1
Y1 - 2023/8/1
N2 - Numerous existing structures exposed to an aggressive environment would also face to a threat from potential strong earthquakes. The coupling effect of environmental aggression and earthquakes could significantly increase the structural damage and failure probabilities of aging buildings. This paper presents a practical methodology of seismic resilience assessment for the corroded reinforced concrete (RC) buildings under mainshock-aftershocks. In this methodology, a piecewise resilience function is introduced, and the structural resilience will drop to zero when performing replacement. An economic loss ratio is adopted to determine the boundary point in the piecewise resilience function. Moreover, a vector-valued approach is employed to evaluate the structural fragility under mainshock-aftershock sequences. To illustrate the proposed methodology, a RC frame building designed according to Chinese codes is used as an example, and four cases with no, low, moderate, and high degrees of corrosion damage are considered with the corrosion rates (ηs) of 0%, 5%, 10% and 15%, respectively. A set of 662 real mainshock-aftershock sequences are selected as the input ground motions from PEER database. The resilience curves are then developed for the uncorroded and corroded RC frame cases under mainshocks alone and mainshock-aftershock sequences. The results show that the coupling effect due to both corrosion and aftershocks lead to a more significant reduction on the structural resilience (ΔR) than the individual effect due to either corrosion or aftershocks. For the condition of ηs = 15% and the PGV of aftershock equals to 0.1 m/s, it is found that there is a 95% of increase on the ΔR due to the coupling effect which is larger than either aftershock (31.6%) or corrosion alone (70%). Moreover, the reduction scale of the structural resilience due to both factors is even larger than the summation of those due to any individual factor alone. The results of this study highlight the importance to consider the two scenarios of aging and aftershocks simultaneously when evaluating the seismic resilience of structures in the lifespan.
AB - Numerous existing structures exposed to an aggressive environment would also face to a threat from potential strong earthquakes. The coupling effect of environmental aggression and earthquakes could significantly increase the structural damage and failure probabilities of aging buildings. This paper presents a practical methodology of seismic resilience assessment for the corroded reinforced concrete (RC) buildings under mainshock-aftershocks. In this methodology, a piecewise resilience function is introduced, and the structural resilience will drop to zero when performing replacement. An economic loss ratio is adopted to determine the boundary point in the piecewise resilience function. Moreover, a vector-valued approach is employed to evaluate the structural fragility under mainshock-aftershock sequences. To illustrate the proposed methodology, a RC frame building designed according to Chinese codes is used as an example, and four cases with no, low, moderate, and high degrees of corrosion damage are considered with the corrosion rates (ηs) of 0%, 5%, 10% and 15%, respectively. A set of 662 real mainshock-aftershock sequences are selected as the input ground motions from PEER database. The resilience curves are then developed for the uncorroded and corroded RC frame cases under mainshocks alone and mainshock-aftershock sequences. The results show that the coupling effect due to both corrosion and aftershocks lead to a more significant reduction on the structural resilience (ΔR) than the individual effect due to either corrosion or aftershocks. For the condition of ηs = 15% and the PGV of aftershock equals to 0.1 m/s, it is found that there is a 95% of increase on the ΔR due to the coupling effect which is larger than either aftershock (31.6%) or corrosion alone (70%). Moreover, the reduction scale of the structural resilience due to both factors is even larger than the summation of those due to any individual factor alone. The results of this study highlight the importance to consider the two scenarios of aging and aftershocks simultaneously when evaluating the seismic resilience of structures in the lifespan.
KW - Corrosion
KW - Economic loss ratio
KW - Mainshock-aftershock
KW - Piecewise resilience function
KW - Reinforced concrete frame building
UR - http://www.scopus.com/inward/record.url?scp=85153795397&partnerID=8YFLogxK
U2 - 10.1016/j.engstruct.2023.116192
DO - 10.1016/j.engstruct.2023.116192
M3 - Journal article
AN - SCOPUS:85153795397
SN - 0141-0296
VL - 288
JO - Engineering Structures
JF - Engineering Structures
M1 - 116192
ER -