@inproceedings{6a83605371a64a60b1cf58bce7cf1f49,
title = "Seismic Performance of Large Rupture Strain (LRS) FRP-Wrapped Circular RC Columns",
abstract = "This paper presents an experimental study on seismic retrofit of circular reinforced concrete (RC) columns with FRP composites. Three RC columns strengthened with Polythylene Naphthalate (i.e., PEN) FRP composite, which has a much larger rupture strain than conventional FRPs, were tested under combined axial loading and cyclic lateral loading. Three conventional CFRP-confined RC columns and one un-strengthened control column were also tested for comparison. The control column was found to fail due to the buckling of the longitudinal steel reinforcement and be of shortage of ductility, while the major role of FRP confinement in cases of slender circular RC columns is to prevent the spalling of concrete cover and the buckling of longitudinal reinforcement. Use of different FRP jackets and FRP stiffness had a marginal effect on the overall load-deformation responses particularly under a lower axial load ratio. Numerical simulations based on OpenSees, into which a cyclic stress-strain model for longitudinal reinforcement previously developed by the authors was implemented, were conducted to facilitate an in-depth understanding of the test results and the corresponding strengthening mechanisms. The cyclic stress-strain model takes into account the buckling effect of steel reinforcement and the lateral confinement effect of FRP jackets. Further parametric studies revealed that under a high axial load ratio (e.g., 0.4), the consideration of buckling of longitudinal reinforcement is of more significance.",
keywords = "Buckling, FRP, Large rupture strain (LRS), Seismic performance",
author = "Zhang, {Yu Feng} and Bai, {Yu Lei} and Sun, {Peng Xuan} and Dai, {Jian Guo}",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.; 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, CICE 2021 ; Conference date: 08-12-2021 Through 10-12-2021",
year = "2021",
month = nov,
doi = "10.1007/978-3-030-88166-5_165",
language = "English",
isbn = "9783030881658",
series = "Lecture Notes in Civil Engineering",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "1914--1922",
editor = "Alper Ilki and Medine Ispir and Pinar Inci",
booktitle = "10th International Conference on FRP Composites in Civil Engineering - Proceedings of CICE 2020/2021",
address = "Germany",
}