Secure Integrated Sensing and Communication Exploiting Target Location Distribution

Kaiyue Hou, Shuowen Zhang

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

In this paper, we study a secure integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) simultaneously serves a downlink communication user and senses the location of a target that may potentially serve as an eavesdropper via its reflected echo signals. Specifically, the location information of the target is unknown and random, while its a priori distribution is available for exploitation. First, to characterize the sensing performance, we derive the posterior Cramér-Roo bound (PCRB) which is a lower bound of the mean squared error (MSE) for target sensing exploiting prior distribution. Due to the intractability of the PCRB expression, we further derive a novel approximate upper bound of it which has a closed-form expression. Next, under an artificial noise (AN) based beamforming structure at the BS to alleviate information eavesdropping and enhance the target's reflected signal power for sensing, we formulate a transmit beamforming optimization problem to maximize the worst-case secrecy rate among all possible target (eavesdropper) locations, under a sensing accuracy constraint characterized by an upper bound on the PCRB. Despite the non-convexity of the formulated problem, we propose a two-stage approach to obtain its optimal solution by leveraging the semi-definite relaxation (SDR) technique. Numerical results validate the effectiveness of our proposed transmit beamforming design and demonstrate the non-trivial trade-off between secrecy performance and sensing performance in secure ISAC systems.

Original languageEnglish
Title of host publicationGLOBECOM 2023 - 2023 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4933-4938
Number of pages6
ISBN (Electronic)9798350310900
DOIs
Publication statusPublished - Dec 2023
Event2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Duration: 4 Dec 20238 Dec 2023

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period4/12/238/12/23

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing

Fingerprint

Dive into the research topics of 'Secure Integrated Sensing and Communication Exploiting Target Location Distribution'. Together they form a unique fingerprint.

Cite this