Secure delegation of signing power from factorization

Yong Yu, Man Ho Allen Au, Yi Mu, Willy Susilo, Huai Wu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Delegation of signing is a working way common in office automation work, and is also an important approach to establish trust. Proxy signature is an important cryptographic primitive for delegating signing powers and it has found many real-world applications. The existing proxy signature schemes from factorization assumption are either insecure or inefficient. In this paper, we propose a novel, efficient and provably secure proxy signature scheme from factorization. Our construction makes use of a factorization-based key exposure-free chameleon hash function in the delegation phase and the proxy signer needs only to find a collision to a chameleon hash value to generate a valid proxy signature. As a result, our scheme is highly efficient in terms of the computation of a proxy signature. We also provide a formal security proof by classifying the adversaries into three categories. Comparisons demonstrate that the new scheme outperforms the known ones in terms of security, computational efficiency and the length of the public key.
Original languageEnglish
Pages (from-to)867-877
Number of pages11
JournalComputer Journal
Volume58
Issue number4
DOIs
Publication statusPublished - 1 Jan 2013
Externally publishedYes

Keywords

  • digital signature
  • factorization
  • provable security
  • proxy signature

ASJC Scopus subject areas

  • General Computer Science

Fingerprint

Dive into the research topics of 'Secure delegation of signing power from factorization'. Together they form a unique fingerprint.

Cite this