Abstract
Ferroelectrics allow for a wide range of intriguing applications. However, maintaining ferroelectricity has been hampered by intrinsic depolarization effects. Here, by combining first-principles calculations and experimental studies, we report on the discovery of robust room-temperature out-of-plane ferroelectricity which is realized in the thinnest monolayer MoTe 2 with unexploited distorted 1T (d1T) phase. The origin of the ferroelectricity in d1T-MoTe 2 results from the spontaneous symmetry breaking due to the relative atomic displacements of Mo atoms and Te atoms. Furthermore, a large ON/OFF resistance ratio is achieved in ferroelectric devices composed of MoTe 2 -based van der Waals heterostructure. Our work demonstrates that ferroelectricity can exist in two-dimensional layered material down to the atomic monolayer limit, which can result in new functionalities and achieve unexpected applications in atomic-scale electronic devices.
Original language | English |
---|---|
Article number | 1775 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Apr 2019 |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy